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Abstract: During the past few years there has been an explosion on the number of games that 

are used for learning. Recently, there has been an emphasis on determining what players learn 
when they play a game, how they problem solve or make decisions and how such decisions 

progress through time showing some aspect of learning. This paper focuses on uncovering 

player learning behavior over time – specifically targeting progression analysis. We use a 

commercial game called Wuzzit Trouble, developed to teach players mathematical thinking 

through simple game mechanics of collecting keys to free a cute creature. We developed a 

new algorithm based on decision theory to investigate how players played the game over time 

and how they shifted their own strategies. The contribution of this paper is a new analysis 

approach towards understanding how players progress through the game, and how such 

progression can reveal insights on their learning process and goals they hoped to achieve. 

Introduction  
In the past decade or so, research in games and learning has examined different ways in which individuals learn 

through games and effective ways in which games can be used within and outside traditional classroom settings 

to teach critical and academically valued skills, like writing and literacy (Magnifico, 2012), computational 

thinking and programming (Kafai, Fields & Burke, 2010; Durga, 2012), scientific thinking (e.g. Steinkuehler & 

Chmiel, 2006; Gaydos & Squire, 2012) and, more recently, engineering design skills (Mayo, 2007; Chesler et 

al., 2013). The main challenge of understanding learning within game contexts is that game environments are 

playful environments, vastly different from classroom settings where knowledge is disseminated and tested 

through examinations. Specifically, in a classroom environment assessment relies on tests, where test takers 
usually have a single intent, and that is to maximize their scores. In such situations, it is straightforward to 

interpret participants’ behaviors. In contrast, learning games present participants with novel experiences filled 

with choices of unknown consequences; thus, it is much harder to determine the hidden motivation that drives 

participants’ behaviors and how that may or may not lead to learning (Young et al., 2012; Shute, 2011; Shaffer 

et al., 2009). Players may take actions that help them understand the game’s rules and mechanics instead of 

optimizing any specific utility function, especially during the early stage of playing. We thus distinguish 

between two types of behaviors, which have been discussed by previous literature (Jensen 2013; Cohen et al., 

2007), exploration and exploitation. Exploration is exhibited when players select actions to gain a better 

understanding of their possibility spaces within the game environment (Jensen 2013). Exploitation behavior is 

observed when the players already have a good idea of how the game operates and aim to seek pleasure in 

beating the game while maximizing some utility function (e.g. score or fun). In fact, when facing a dynamic or 

unknown environment, people usually have to deal with the so-called exploration-exploitation trade-off in order 
to gain the highest long-term benefit (Cohen et al., 2007; Leonard et al., 2007). Moreover, as there is no time 

constraint in playing a game, players are enticed to explore because that allows them to enjoy their discoveries 

better in later stages (Carstensen et al., 1999). Due to these iconic patterns of behavior in playful environments, 

learning and assessment techniques cannot be applied as-is to learning games.  

In order to model and understand learning in such a game environment, one needs to model and 

understand behaviors and choices made over time specifically capturing the exploitation vs. exploration theory 

(Cohen et al., 2007). It should be noted that while games are designed with finite mechanics, the behavioral 

outcomes and their combinations over time are not a closed space this is due to the stochastic and Markovian 

nature of learning in game environments. In other words, we believe that the meaning (specifically learning) of 

a behavior X in a situation Y cannot be interpreted based solely on the current situation, but rather we need to 

take into account the behavior sequence preceding that behavior and the situations of each of these behaviors 
(Baker et al., 2009). 

In this paper, we adopt the reinforcement learning perspective (Sutton, 1999) to make inferences about 

players’ decision-making process and motivations in their moment-to-moment actions. Using reinforcement 

learning, we model player strategies in a commercial Math game called WuzzitTrouble, with the objective of 

revealing possible player motives for the actions that they take in the game. The resulting model is a domain-

independent mechanism to associate the raw action data with exploratory-exploitative patterns. We will show 

how players’ action data viewed from this perspective helped us understand players’ progression and quitting 

behavior, and reveal players’ problem-solving and decision making strategies that have been extensively 

theorized to be critical in developing fluency and competence in mathematical problem-solving (Schoenfeld, 

1992; 1985). 

http://rstb.royalsocietypublishing.org/content/362/1481/933.full#ref-27
http://rstb.royalsocietypublishing.org/content/362/1481/933.full#ref-11


Related work 
Works in learning assessment in games and complex interactive environments fall in to two categories, (a) 

evidence-based assessment techniques that focus on design of assessment frameworks and task designs to 

indicate content learned and (b) user modeling and user-adapted AI techniques that seek to model patterns in 

learning and participant strategies. Evidence-based automated learning assessment techniques use prescribed 

task and competence or skill models, apply them to an open-ended environment, thereby scoping it, and 

determining whether or not participants succeed (or how well they succeed) in completing these tasks, so as to 

assess the strength of the evidence in what and how well the participants learned something (Messik, 1994; 

Mislevy & Hartel, 2006). Such assessment techniques can work extremely well in cases where evidence from 

each action can cumulatively amount to total learning, such as in many computer-based tests, like GRE or 

GMAT. In games, to some extent, clusters of skills and abilities may be inferred from player actions, thereby 

amounting to the evidence for learning, such as in stealth assessment design (Schute, 2011). The strength in 

such evidence-centric approaches lie on their ability to demonstrate alignment of skills or competencies to 
possible player actions (Schute et al., 2008; Rupp, et. al, 2010). However, these approaches work best when 

competence and action mapping are unambiguous. In other words, these evidence-centric approaches need to 

make (or enforce) definitive assumptions about player motives, e.g., excel or succeed, and by doing so they 

assume that players pursue a certain set of strategies aligned with the designers’ intent. As we have argued 

earlier in this paper, this may not always be the case, particularly in games where choices and motives are linked 

rather too closely and tend to shift during play.  

In parallel, there have also been several studies in learner modeling or profiling, which is the idea of 

grouping learners based on a pre-established screening algorithms that are derived either from static 

questionnaires (Tzouveli et al., 2008) or a limited set of pre-determined choices that participants are allowed to 

make in problem-solving, for instance see early work on cognitive tutors (Anderson et al., 1995; Corbett & 

Anderson, 1985). More recently, learner models are derived through data-mining and using decision trees to 
determine learner characteristics (Lin et al., 2013). The focus is on learners’ strategies when immersed in open-

ended environments with fairly unlimited or a large set of choices and models are used to detect strategy 

differences across individual participants or patterns of problem solving in large open-ended space (Berland et 

al., 2013). Such approaches that seek to detect player strategies, or salient patterns of play allow for more in-

depth analyses on how player strategies shift over time (Desmarias & Baker, 2011; Baker, et. al. 2013). Some 

studies use unsupervised learning techniques that take in large raw or unlabeled data and detect learning patterns 

through clustering on sets of aggregated behavior data identifying “clusters of behaviors” (Berland & Martin, 

2013; Drachen et al., 2009). However, a limitation with such techniques is that they provide an overview of the 

population’s behavior and operate on aggregated data, which inherently imposes limitations for modeling 

individuality, i.e., nuances in individual actions are washed out (Recker & Piroli, 1995). In order to account for 

individual differences in strategies, some player-modeling approaches connect hypothetical implicit playing or 

learning factors (such as motivations, beliefs, intentions, desires or skillfulness and competency) to actual action 
observations. These models provide a means to logically infer the players’ implicit states from their specific 

observed actions. Such models, while extremely flexible because they can operate both on aggregated and raw 

data, require domain knowledge (to build hypotheses) and extensive testing (to validate hypotheses) before they 

can be used reliably. This imposes a non-trivial overhead on human labor. Our technique marries these two 

approaches, providing a domain-independent method to contextualize raw action data using a well-tested theory 

of human behavior: decision theory. That is, we seek to model a learning phenomenon such that it can predict or 

be used to ‘mine’ for relationships that are more useful for examining complex relationships between actions 

and motives for strategies. Similar examples for possible analyses of complex relationships include looking at 

how impact of moderating design decisions impact student behavior over time, or looking for related sub-

categories of learners that can benefit from similar learning material, but differently (Baker & Yacef, 2009). 

Modeling WuzzitTrouble using a reinforcement learning perspective 
Sutton explains reinforcement learning as 

“learning what to do, how to map situations to actions so as to maximize a scalar reward 

signal. The learner is not told which action to take, as in most forms of machine learning, but 

instead must discover which actions yield the most reward by trying them” (Sutton, 1999). 

From this viewpoint, a strategy in a game is a way to select actions so as to maximize a certain utility 

or reward function. Several goals may describe how a said level in the game was completed and thus, being able 

to predict consistent strategies from moment-to-moment player actions. This would allow us to calibrate player 

expertise or ability to play the level. For example, a player who seeks to acquire the highest possible score will 

try to complete as many sub-quests as possible to obtain most points possible. Through this strategy, the player 

consciously values obtaining points in a level over quickly passing it. In contrast, a player who seeks to 

minimize the time spent in each level will focus only on the bare minimum set of quests needed to move on to 



the next level. Therefore, while the game mechanics and the reward structure of the game stays the same, 

players actions ought to be interpreted differently because different actions are prioritized due to adoption of 

different strategies. Normalizing player actions would likely suppress individual differences in play styles. In 

the following sections, we describe briefly, the game mechanic, how we modeled the game system based on two 

hypothesized player strategies, and subsequently we show how identifying these strategies allowed us to 

interpret player behavior. 

Brief description of the game WuzzitTrouble  
WuzzitTrouble is a commercial game, released as a free download by the startup company BrainQuake in fall 

2013. The game is designed to provide arithmetic-based puzzles with increasing difficulty in a fashion that 

circumvents the usual symbolic notation of arithmetic in an effort to break the symbol barrier, a widely known 

obstacle in arithmetic problem solving (Devlin, 2013). The goal of the game is to free creatures called Wuzzits 
from their traps by collecting all the keys in a level. The keys hang on to a large wheel that is rotated such that 

the position of the key aligns with the marker at the top. Note, in Figure 1 below, the marker is at number ‘0’ 

and needs to be moved to number ‘20’ and also to number ‘50’ to obtain both the keys needed to free the 

trapped Wuzzit. To align the marker with the said number, players rotate the large wheel clock-wise or anti-

clockwise. The distance or number of units moved by the large wheel depends on the gears (smaller cogs 

beneath the large wheel, with numbers 3, 8 &13 marked on them). For example, if a player rotates the gear 

numbered 3 clockwise, the marker moves 3 pegs to the left; or if the player rotates the gear marked 13 anti-

clockwise, the marker moves 13 pegs to the right. 

 

Figure 1. Wuzzit Trouble, Stage 2, Level 3 (Image used courtesy of BrainQuake Inc.) 

Each small cog can be turned up to five times to generate a five-step turn of the wheel, offering up to 
five opportunities to collect a key (or other item) with a single move. This is a critical gameplay mechanic to 

learn in order to free the Wuzzit with the smallest number of cog rotations such that the player beats the level 

with most stars, from a range of one, two or three stars. In addition, the pegs with unique gems attached to them, 

like the green gem between 25 and 30, in the figure above, rewards the player with bonus points. At higher 

levels, there are items that deduct points from the players, so for players who value high points, they should 

avoid these items as much as possible. The overall score at each level is determined by obtaining the keys and 

the bonus rewarding gems with least possible moves.  

WuzzitTrouble In-Game Player Action Data 
WuzzitTrouble has been instrumented such that the moves made by players in each level are recorded in the 

database with tags differentiating different player sessions uniquely. Players’ personal information, such as 

names, is obfuscated to protect their privacy. Gameplay logs from the telemetry allow us to simulate how the 

game was been played in one unique session. The logs include information about player performance, like the 

number of points and stars earned at the end of the level and moment-to-moment player actions, like all the 

moves made in a level and the items collected in that level with each move. 

Analysis  
By modeling and solving each game level as sequential action planning problems, we can obtain the ideal, and 

thus optimal, behavior patterns with respect to two main strategies that we think are prominent within Wuzzit: 

Score Maximizer (SM) and Level Passer (LP). The solutions then allow us to impose a ranking order on all 

actions available at each state. The values, namely Q-ranks, capture how optimal each action is when executed 

at each state as compared to the ideals of strategies SM and LP. Since the conformity of a player’s selected 

moves to a strategy’s optimal actions, if happening consistently, is an indication of the strategy’s adoption, Q-

ranks provide a means to track how a player adopts strategies throughout the play session. For example, a 

sample output after applying the Q-ranking procedure in a level goes as follows 
ScoreMaximizer: Avg = 8.25; Q-Ranks = [3, 11, 1, 18, 0, 3, 9, 21] 

LevelPasser:  Avg = 1.62; Q-Ranks = [1, 4, 3, 0, 1, 4, 0, 0]  



The average number is simply the average of the series of Q-ranks that follow. In the above example, the 

player’s Q-ranks show that her behavior is closer to a Level Passer than a Score Maximizer. Additional 

statistical test can be applied to arrive at a statistically significant conclusion in terms of strategy proximity.  

Interpretation 
With the above analysis of player behavior, each player’s moves can be interpreted in relation to known 

strategies. This allows us to form hypotheses about possible developments of a player’s strategies over time, 

both intra-level and inter-level, some of which are described below. 

1. Explore then quit: Figure 2a depicts the strategy proximity of Player 14091’s behavior in a randomly 

selected level (in this case, level 16 in her session) and in all levels played before quitting. Observe that in the 

levels leading to the end of the session, the average proximity of her moves to both strategies (right column of 

Figure 2a) is large and has high variance. The lack of convergence on any strategy shows that the player was 
still in an exploration mode when she quitted. The quit can be explained as being the result of her frustration or 

boredom in the game. When zooming in onto a specific level (left column of Figure 2a), we can see a similar 

pattern of moves, in which the player was selecting actions that are not optimal in any strategy, before deciding 

to end the game quickly by selecting actions similar to those of a Level Passer. The fact that the player was 

almost never able to solve a level optimally with respect to any strategy hints that the player might not even 

discover the strategies. 

 

 
2. Converge to LP then quit: Figure 2b depicts the same examination done on Player 17380’s play session. 

Overall, the player made moves that are closer to those of an LP than SM. There seems to be a period (level 10 

to 14, Figure 3b) in which the player attempted exploration by deviating away from LP’s optimal moves (high 

variance), but eventually gave up and fell back to LP before quitting the game.  

3. Exposed to both strategies then quit: Figure 3 shows the analysis on Player 2280. Notably, this player had 

both moments in which her moves are optimal in SM (moves 2, 3 in Figure 4a and level 11, 12 in Figure 4b),  

and moments when it is clearly that she was just LP-ing (level 17). At the end of the session, this player had 

been exposed to both strategies. 

 

 

(a) (b) 

Figure 3. Q-ranks of player 2280 

Figure 2. The Q-ranks of (a) player 14091 and (b) player 17380; the y-axis denotes Q-rank values. The first 

column in each subgraph depicts Q-ranks in One level while the second shows average Q-ranks in each levels 

of their session with error bars being standard deviations; dotted lines are respective trend lines of the graphs. 



Concluding remarks and implications for future directions of the Study 
In this paper, we presented a decision-theoretic approach to model players’ in-game behavior. The analysis 

opens new doors towards understanding different phases in the playing pattern, leading to insights that can in 

turn be leveraged to improve the playability of the existing game. In the future, we want to pursue the following 
directions: 

1. Detection of exploration/exploitation transition point: A player in the process of exploring the game 

does not adhere consistently to any specific strategy yet. If we plot the proximity of their moves in 

relation to strategies’ expected moves, the result is that players in exploration often select actions that 

are rarely close to any strategy over a long period of time. 

2. Detection of quitting patterns: By observing the player’s behavior, in relation to exploration and 

exploitation, towards the end of his/her play session, we can learn quitting patterns to answer the 

following questions: Does the player stop playing upon frustration (i.e. quitting while exploring) or 

due to boredom (quitting while exploiting)? If this analysis can be done in real time while the player is 

still playing, we can adjust the game accordingly to avoid their upcoming frustration or boredom. 

3. Difficulty analysis: By analyzing quitting patterns of all players, we will be able to obtain the current 
difficulty level of the game to its audience, i.e. whether most players quit while exploring or 

exploiting. This insight can then be fed into the next iteration of game development so that the game’s 

difficulty can be adjusted suitably to raise player retention. 

4. Pedagogical intervention: In relation to learning games or games with serious purposes, detection of 

adopted strategies allows the instructors to timely intervene each individual students’ learning process 

should they are detected to be embarking on a wrong path.  
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